16,116 research outputs found

    Hole burning in a nanomechanical resonator coupled to a Cooper pair box

    Full text link
    We propose a scheme to create holes in the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in the atom-field system via distinct schemes. As an application we show how to use the hole-burning scheme to prepare (low excited) Fock states.Comment: 7 pages, 10 figure

    Laparoscopic Radical Nephrectomy in a Pelvic Ectopic Kidney: Keys to Success

    Get PDF
    Preoperative imaging to delineate anomalous vascular anatomy is mandatory to perform laparoscopic radical nephrectomy for a pelvic ectopic kidney

    On the Connection Between Momentum Cutoff and Operator Cutoff Regularizations

    Full text link
    Operator cutoff regularization based on the original Schwinger's proper-time formalism is examined. By constructing a regulating smearing function for the proper-time integration, we show how this regularization scheme simulates the usual momentum cutoff prescription yet preserves gauge symmetry even in the presence of the cutoff scales. Similarity between the operator cutoff regularization and the method of higher (covariant) derivatives is also observed. The invariant nature of the operator cutoff regularization makes it a promising tool for exploring the renormalization group flow of gauge theories in the spirit of Wilson-Kadanoff blocking transformation.Comment: 28 pages in plain TeX, no figures. revised and expande

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Metastability in Spin-Polarized Fermi Gases

    Full text link
    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.Comment: 4 pages, 6 figure

    Flow Equations for U_k and Z_k

    Get PDF
    By considering the gradient expansion for the wilsonian effective action S_k of a single component scalar field theory truncated to the first two terms, the potential U_k and the kinetic term Z_k, I show that the recent claim that different expansion of the fluctuation determinant give rise to different renormalization group equations for Z_k is incorrect. The correct procedure to derive this equation is presented and the set of coupled differential equations for U_k and Z_k is definitely established.Comment: 5 page

    Characterisation of an n-type segmented BEGe detector

    Full text link
    A four-fold segmented n-type point-contact "Broad Energy" high-purity germanium detector, SegBEGe, has been characterised at the Max-Planck-Institut f\"ur Physik in Munich. The main characteristics of the detector are described and first measurements concerning the detector properties are presented. The possibility to use mirror pulses to determine source positions is discussed as well as charge losses observed close to the core contact

    A Note on the Local Cosmological Constant and the Dark Energy Coincidence Problem

    Full text link
    It has been suggested that the Dark Energy Coincidence Problem could be interpreted as a possible link between the cosmological constant and a massive graviton. We show that by using that link and models for the graviton mass a dark energy density can be obtained that is indeed very close to measurements by WMAP. As a consequence of the models, the cosmological constant was found to depend on the density of matter. A brief outline of the cosmological consequences such as the effect on the black hole solution is given
    corecore